
CMP417: Engineering Resilient Systems 1

Software Security

Thomas MacKinnon
School of Design and Informatics

Abertay University
DUNDEE, DD1 1HG, UK

1



Abstract

This reports takes a look at the dangers that Insecure Data Storage in Mobile Applications could
cause if left untreated, and documents how a simple Secure Engineering Practice can mitigate this
vulnerability type. This is expressed through a hypothetically scenario were a small business is at
risk of an attack and needs to upgrade the security of their software systems.

The mobile app, used to access a back end database, is deemed priority with the focus on securely
storing data on the device. Code Reviewing meetings are presented as the best solution to avoid
potential attacks for the business and is solving the issue of Insecure Data Storage. To show this a
vulnerable mobile application is used to show how easily an Insecure file can be stolen from a device,
and how easily it can be fixed with proper programming and Code Reviewing.

2



Contents

1 Context 4

2 Recommendation 6

3 Implementation 7

4 References 9

5 Appendix 11

3



1 Context

Recent threats from a Hacktivist group has put “Company Redacted” on edge, leading to the CEO
investing more resources into Cyber Security. The company does not have a dedicated security
specialist, so each employee is going to receive training about secure coding practices in order to
make the business more resilient to malicious hackers.

Out of the available software systems the Mobile application was deemed to be first priority, as it
can access staff information, which could be sensitive in nature, and has the potential to change the
information stored. It is assumed this Mobile app is used to update and access information stored
on a database webserver after authenticating the user. It is also probable that this Mobile app stores
information on the users phone, such as remembered sign-in information or a token to allow access.

Mobile devices are increasingly becoming the target of attacks as they become a more and more
prevalent in our daily life and even an essential tool for the majority of the population. With each
passing year the number of CVEs (Common Vulnerabilities and Exposures) affecting Mobile devices
and their Applications increase greatly (Mobliciti, 2020), meaning the need for secure software
engineering is also increasing. Mid 2020 saw the rise of “Strandhogg 2.0”(CVE-2020-0096), an
Android security vulnerability that gave hackers access to all of the victims apps, login details,
GPS locations, texts and much more through undetectable phishing screens (Kumar M, 2020). This
flaw in code has left over a billion devices vulnerable, and that’s just one vulnerability. A 2019
report by “Positive Technologies” (Positive Technologies, 2019) found that a staggering 76% of
Mobile Application contained Insecure Data storage, leaving many users sensitive information like
passwords and data at risk. Figure 1 shows that this security flaw occurs twice as much as the next
result, making it likely that this vulnerability also effects the staffs app and should be priority when
searching for weak spots.

Figure 1: Positive Technologies bar chart of Mobile Application vulnerabilities by type

4



OWASP (Open Web Application Security Project), a foundation that works on improving security
of software, backs this up further by placing Insecure Data Storage vulnerabilities as their second
highest risk for mobile applications (OWASP, 2016). They highlight how this security can easily be
exploited through computer based tools and can have severe impact on a business if not addressed.
“Company Redacted” could face cases of Identity theft, data leakage, fraud and a huge hit to their
reputation if this vulnerability is exploited. Insecure Data Storage has been documented as “CWE-
922: Insecure Storage of Sensitive Information” in the “Common Weakness Enumeration (CWE)”
list of software/hardware weakness types, with many associated listings of more specific weaknesses
(The MITRE Corporation, 2020). A collection of CVEs related to Insecure Data Storage have been
collected in order to give more context to the issue:

CVE-2013-6986 - The ZippyYum Subway Kiosk app (version 3.4) for iOs stores a SQLite database
on the users phone. However, all of the data is insecurely stored in plaintext, even sensitive infor-
mation such as passwords (The MITRE Corporation, 2013).

CVE-2014-0647 - The Starbucks app (version 2.6.1) for iOs stores all the users information in a
plaintext Crashlytic log file named “session.clslog” which can be easily accessed in the device file
system (The MITRE Corporation, 2014).

CVE-2019-13096 - TronLink Wallet (version 2.2.0) allows users to store money remotely and safely.
However, the users key to their wallet is stored in a plaintext XML file, if found by a malicious actor
it would gives them complete access to the wallet and all the money inside (The MITRE Corporation,
2019).

CVE-2010-2913 - Citibank Citi Mobile app (version 2.0.3) stores all of the users information in
an insecure file which can easily be accessed (The MITRE Corporation, 2010).

5



2 Recommendation

Code Review is a method of secure engineering that provides a very thorough examination of code to
eliminate any potential faults. OWASP describe code review as the art of “understanding the code
of the application, external components, and configurations to have a better chance of finding the
flaws” in their 2017 Code Review guide (OWASP, 2017). This is done through scheduled meetings
(bi-monthly, weekly or even more often) where the developers gather to intensely review code in
order to find vulnerabilities and errors with their work. Often the group size is kept small (under
ten participants) in order to keep the meeting efficient and avoid too many interfering hands. Another
step to keeping meetings efficient is the presence of a Code Review Checklist which covers topics
like Security, Performance, Scalability and much more (Gutha S.R, 2015). Issues like these are often
missed or skipped over during development as they are seen as not being the priority, Code Review
Checklists helps push these important areas back in the developers faces so that the proper attention
is given to them.

This practise has the added benefit of speeding up patching time, as the developers know the code
inside out, so can fix issues without the hassle of finding the problem code. Code reviewing is a
timely exercises that cannot be automated, so often is pushed aside in favour for new developments.
Figure 2 shows the decline in defects found as the workload increases for the hour time slot of Code
Review, clearly showing that 100-200 lines of code is the sweet spot for efficiency and effectiveness
(SmartBear, 2021). Although slow this practice is always worth the time invested, as it provides
excellent vulnerability catching and unifies developers in the security of their codebase (Google
Github, 2020).

Figure 2: Graph showing the decline of effective Code Reviewing as Lines of Code increase.

For “Company Redacted” Code Reviewing seems like the perfect fit for their business type, having
only six developers works very nicely with the meeting capacity, and this secure engineering practice
is very cost effective at solving these potential vulnerabilities. With weekly meetings dedicated to
systematically reviewing code and removing bugs, the threat from the Hackivist group is greatly
mitigated, not just for the Mobile Application but for all aspects of their system.

6



3 Implementation

The Mobile Application was presumed to be used to authenticate users before allowing access to a
remote database of staff information. In many apps like this a “Remember me” feature is included
to allow users to quickly access the contents without signing in, this can take form as saved login
credentials or a security token, both of which stored on the device memory. If these files are not
properly encrypted (or even left in plaintext) than any malicious actor who finds the login details
has full access to the database and its contents, with the power to change any information they
want. If the team was to adopt Code Reviewing as a Secure Engineering Practice then they would
definitely spot the Insecure data storage, as all Code Review Checklists contain a Security section,
where sensitive information is checked to see if it is properly encrypted. With this simple practice
the risk of identity fraud, data leakage and data loss are mitigated through proper management of
sensitive information, leaving a much safer Mobile App.

Figure 3: Finding the wallets XML file with the keystore inside.

Finding these files is rather easy when looking through the file system, to demonstrate this a vulner-
ability addressed in “Context” section was loaded onto Android Studios emulator (Android Devel-
opers, 2021). The vulnerability in question was CVE-2019-13096 which related to the TronLink
Wallet app version 2.2.0, where the key to the wallet was stored in a plaintext XML file. The
TronLink app was installed on the emulator using an APK of the vulnerable version (APKPure,
2019) and a Wallet was created with the name “cmp417wallet” and a password of “WalletPass-
word123”. The device’s filesystem was then navigated through Android studio to /data/data/-
com.tronlink.wallet/shared prefs/ which contained the wallets XML file, as seen in Figure 3. The
file was downloaded and opened with a browser, revealing the plaintext keystore, which can be used
to gain unauthorized access to the Wallet, the full XML file can be found in the Appendix. The lo-
cation of the XML file seemed to be a common place to store sensitive information when researching
other CVEs related to this one, for a knowledgeable attacker this would be the first place they look.
Code reviewing would likely find this fault very quickly, as the entire app is based around this file
so would be the first to be put under inspection.

7



It is shocking that Insecure Data Storage in Mobile Applications is such a big issue in the first place,
both iOS and Android offer security features that prevents this from happening. Apple offers a
Keychain service for developers, where sensitive information can be stored securely and centrally,
totally mitigating the risk from an attacker (Apple Developers, 2021). Android offers an excellent
library allowing developers to easily encrypt any output files, with a two part system of encryption
for added security (Android Developers, 2021), were each keyset for encrypted files are also encrypted
under a primary key.

With the simple adoption of Code Reviewing and utilising the provided developer security features it
is certain that the risk of Insecure Data Storage, and potentially many more vulnerability types, are
completely mitigated, leaving a safe and secure Mobile app with all of the staffs sensitive information
kept secret.

8



4 References

Android Developers. 2021. Android Studio Download. [online] Available at:
https://developer.android.com/studio [Accessed 14 March 2021]

Android Developers. 2021. Work with data more securely. [online] Available at:
https://developer.android.com/topic/security/data [Accessed 16 March 2021]

APKPure. 2019. TronLink Download Versions. [online] Available at:
https://apkpure.com/tronlink-wallet-tron-blockchain-wallet/com.tronlink.wallet/versions
[Accessed 14 March 2021]

Apple Developers. 2021. Keychain Services Overview. [online] Available at:
https://developer.apple.com/documentation/security/keychain services [Accessed 16 March 2021]

Google Github. 2020. Google’s Engineering Practices documentation: The Standard of Code
Review. [online] Available at:
https://google.github.io/eng-practices/review/reviewer/standard.html [Accessed 12 March 2021]

Gutha S.R., 2015. Code Review Checklist – To Perform Effective Code Reviews. [online] Evoke
Technologies. Available at:
https://www.evoketechnologies.com/blog/code-review-checklist-perform-effective-code-reviews/
[Accessed 12 March 2021]

Kumar, M. 2020. New Android Flaw Affecting Over 1 billion Phones Let Attackers Hijack Apps.
[online] The Hacker News. Available at:
https://thehackernews.com/2020/05/stranhogg-android-vulnerability.html [Accessed 9 March
2021]

The MITRE Corporation, 2020. CWE-922: Insecure Storage of Sensitive Information. [online]
CWE. Available at:
https://cwe.mitre.org/data/definitions/922.html [Accessed 9 March 2021]

Mobliciti. 2020. MOBILE OS VULNERABILITIES: THE LURKING CULPRITS IN YOUR
MOBILE FLEET. [online] Mobliciti. Available at:
https://mobliciti.com/mobile-os-vulnerabilities-mobile-fleet/ [Accessed 9 March 2021]

OWASP. 2017. OWASP CODE REVIEW GUIDE 2.0. [online] OWASP. Available at:
https://owasp.org/www-pdf-archive/OWASP Code Review Guide v2.pdf [Accessed 12 March
2021]

OWASP. 2016. OWASP Mobile Top 10. [online] OWASP. Available at:
https://owasp.org/www-project-mobile-top-10/ [Accessed 9 March 2021]

Positive Technologies. 2020. Vulnerabilities and threats in mobile applications, 2019. [online]
Positive Technologies. Available at:

9

https://developer.android.com/studio
https://developer.android.com/topic/security/data
https://apkpure.com/tronlink-wallet-tron-blockchain-wallet/com.tronlink.wallet/versions
https://developer.apple.com/documentation/security/keychain_services
https://google.github.io/eng-practices/review/reviewer/standard.html
https://www.evoketechnologies.com/blog/code-review-checklist-perform-effective-code-reviews/
https://thehackernews.com/2020/05/stranhogg-android-vulnerability.html
https://cwe.mitre.org/data/definitions/922.html
https://mobliciti.com/mobile-os-vulnerabilities-mobile-fleet/
https://owasp.org/www-pdf-archive/OWASP_Code_Review_Guide_v2.pdf
https://owasp.org/www-project-mobile-top-10/


https://www.ptsecurity.com/ww-en/analytics/
mobile-application-security-threats-and-vulnerabilities-2019/ [Accessed 9 March 2021]

Smart Bear. 2021. Best Practices for Code Review. [online] Smart Bear. Available at:
https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/ [Accessed 12
March 2021]

CVE References:
The MITRE Corporation, 2013. CVE-2013-6986. [online] CVE. Available at:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6986 [Accessed 9 March 2021]

The MITRE Corporation, 2014. CVE-2014-0647. [online] CVE. Available at:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0647 [Accessed 9 March 2021]

The MITRE Corporation, 2019. CVE-2019-13096. [online] CVE. Available at:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13096 [Accessed 9 March 2021]

The MITRE Corporation, 2010. CVE-2010-2913. [online] CVE. Available at:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2913 [Accessed 9 March 2021]

10

https://www.ptsecurity.com/ww-en/analytics/mobile-application-security-threats-and-vulnerabilities-2019/
https://www.ptsecurity.com/ww-en/analytics/mobile-application-security-threats-and-vulnerabilities-2019/
https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6986
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0647
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13096
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2913


5 Appendix

<map>
<long name=” c r e a t e t i m e k e y ” value=”0”/>
< i n t name=”mnemonic length>” value=”0”/>
<s t r i n g name=” w a l l e t a d d r e s s k e y ”>TSrk6g6QHHnaneZfLUBfP7bSNPB26DZ8e2</ s t r i n g>
<long name=” bandwidth key ” value=”0”/>
<s t r i n g name=” wal let name key ”>cmp417wallet</ s t r i n g>
<boolean name=” i s c o l d w a l l e t k e y ” value=” f a l s e ”/>
<s t r i n g name=”name key”/>
<s t r i n g name=” a s s e t s v 2 k e y ”>{}</ s t r i n g>
<long name=” energy used key ” value=”0”/>
<long name=” n e t f r e e l i m i t k e y ” value=”0”/>
<long name=” ba lance key ” value=”0”/>
<long name=” w a l l e t c r e a t e t i m e k e y ” value=” 1615831728174 ”/>
<long name=” freeze bandwidth key ” value=”0”/>
<long name=” e n e r g y l i m i t k e y ” value=”0”/>
<long name=” t o t a l e n e r g y l i m i t k e y ” value=”0”/>
<long name=” l a t e s t o p e r a t i o n t i m e k e y ” value=”0”/>
<long name=” f r e e z e e n e r g y k e y ” value=”0”/>
<s t r i n g name=” a s s e t s k e y ”>{}</ s t r i n g>
<long name=” t o t a l e n e r g y w e i g h t k e y ” value=”0”/>
<s t r i n g name=” w a l l e t k e y s t o r e k e y ”>
{” address ” : ”41 b9412f56821d56cd819725b2df6c5e3dec64013f ” ,
” crypto ” : {” c iphe r ” : ” aes −128− c t r ” ,
” cipherparams ” : {” iv ” : ” f91470e255c9905136b38b07dbe980cf ” } ,
” c i p h e r t e x t ” : ” d814d0d405925b0ff6eab317cc5d067294d2ae8e6d5d1453b17707197a88cab7 ”
, ” kdf ” :
” sc rypt ” , ”kdfparams” : {” dklen ” :32 , ”n” :65536 , ”p” :1 , ” r ” :8 ,
” s a l t ” : ” b7257ea19f5a9bc2c41a18548e83a3d3802215cd3031fe9c9acb6d784e1923de ” } ,
”mac” : ”8 e3a6058e1623ab4455826f860b2d47dd57f7ea99978c1c539c9d7f2 f68c55df ” } ,
” id ” : ”7 c81cbc0−cc54 −46f9−a7dc −7556 f64e4664 ” , ” v e r s i on ” : 3 }
</ s t r i n g>
< i n t name=” w a l l e t c o l o r k e y ” value=”−1”/>
<s t r i n g name=”pwd key”>0205149 ec6358ee0ece80a4293a274ea</ s t r i n g>
<long name=” n e t f r e e u s e d k e y ” value=”0”/>
< i n t name=” w a l l e t c r e a t e t y p e k e y ” value=”0”/>
<long name=” energyt ime key ” value=”0”/>
<long name=” net used key ” value=”0”/>
<long name=” t o t a l n e t l i m i t k e y ” value=”0”/>
<s t r i n g name=” f ro z en key ”>{}</ s t r i n g>
<s t r i n g name=” w a l l e t i c o n k e y ”>two</ s t r i n g>
<s t r i n g name=”pub key”>
04 dd3abb4a01a9af7b03992904252c485a6b1bc3133b19df30
d4cb5248cac fd5d55819e8 f8 fcec59b075f f90 f2add61ed902e fb804c49399c683112f828ea303dd
</ s t r i n g>
<s t r i n g name=” vote s key ”>{}</ s t r i n g>
<long name=” t o t a l n e t w e i g h t k e y ” value=”0”/>

11



<boolean name=” se t hasaccount key ” value=” true ”/>
<boolean name=” i s w a t c h o n l y s e t u p k e y ” value=” f a l s e ”/>
<s t r i n g name=” addres s key ”>3QJmnh</ s t r i n g>
<long name=” d e l e g a t e d f r o z e n b a l a n c e f o r b a n d w i d t h k e y ” value=”0”/>
<long name=” d e l e g a t e d f r o z e n b a l a n c e f o r e n e r g y k e y ” value=”0”/>
<boolean name=” backup key ” value=” f a l s e ”/>
<long name=” n e t l i m i t k e y ” value=”0”/>
<s t r i n g name=” wallet newmnemonic key ”>
{” address ” : ”41 b9412f56821d56cd819725b2df6c5e3dec64013f ” ,
” crypto ” : {” c iphe r ” : ” aes −128− c t r ” , ” cipherparams ” :
{” iv ” : ” f4356a4ac07080d697e09255d02df346 ” } ,
” c i p h e r t e x t ” : ”06 e2a0440df f936 f0c0c f20 fc31a7d97b2b8bc
6517 fc44b18b73ae454a4c4c250d3c0b409fb19bf f52b5af5e81
931 fa562 f9c23521 f026a46 fdc00c f417d87b2 fa83429 f2e170
f34ba2a6b52d2e77171cd ” , ” kdf ” : ” sc rypt ” , ”kdfparams”
: {” dklen ” :81 , ”n” :65536 , ”p” :1 , ” r ” :8 , ” s a l t ” : ”0b7ec31db
312486656 abbaf308ad335651d7007d5646ab450d410f6aa0396
811136 faaf27792b3f3da5076819bcd212533ed5db720d6902f
437 c45903e0ed00b18eba28b10fdd1301e7cc299359d45d679 ”}
, ”mac” : ” ee3111 f6b5b666e6ad4c8562923765e7 f60 f2 fbe fe89
1 f1e f0321e5 f113432b9 ” } , ” id ” : ” a f f3cde0 −6278−4764−a7 f
5−43b712a77872” , ” v e r s i on ” : 3 }
</ s t r i n g>
<long name=” energy key ” value=”0”/>
</map>

12


	Context
	Recommendation
	Implementation
	References
	Appendix

